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ABSTRACT
When it comes to the refurbishment of existing buil-
dings there are different objectives; for instance, the
reduction of energy consumption, global warming po-
tential (GWP) or costs. To find the optimal solution
can be very challenging. Thus, the application of a
building simulation model combined with a multi-
objective optimization (MOO) might be useful. Ho-
wever, a drawback of a numerical optimization is the
computational effort. In this paper we show that the
replacement of the detailed building simulation model
with a neural network can reduce the computational
effort for a optimization analysis. Furthermore we
conclude that it could be necessary to give special
attention to the errors of the meta model on the boun-
daries of the range of validity.

In a first step, a detailed building model of an existing
single-family house was developed. Based on the si-
mulation results of this detailed model a neural net-
work was created. A genetic algorithm was used to
fulfil a multi-objective optimization for the building
parameters of different retrofit measures to optimize
thermal comfort, global warming potential (GWP) and
costs.

INTRODUCTION
Climate mitigation is one of the major challenges of
our society. In Europe, the building stock is respon-
sible for 40% of all energy consumption and 36% of
total CO2 emissions (EU-Council, 2010). Therefore,
the refurbishment of existing buildings is a first prio-
rity measure when it comes to handle against climate
change. Building energy simulation (BES) is one me-
thod to evaluate the impact of different renovation
measures. To handle several objectives, for instance
energy demand and costs, the BES can be combined
with a multi-objective optimization (MOO).

The combination of BES and numerical optimizati-
on is widely used (Nguyen et al., 2014; Machairas
et al., 2014; Evins, 2013). For a MOO the genetic
algorithm is one of the most used techniques in the
building community (Evins, 2013; Eisenhower et al.,
2012). A genetic algorithm (GA) is a stochastic search
technique based on natural biological evolution. One
advantage to common methods like gradient based op-
timization is the population of solutions compared to

a descent along a gradient. This reduces the likelihood
of converges to a local minima. Examples of the use of
MOO with a GA are (Wright et al., 2002). They used
a MOO with a genetic algorithm to find the trade-offs
between the thermal comfort and the energy cost of a
single zone model. (Hamdy et al., 2011) optimized the
carbon dioxide emissions and the costs for a two story
house.

A drawback of MOO with a detailed building model is
the computational effort. One opportunity for reducing
the simulation time is to replace the building model
with a meta model (Eisenhower et al., 2012; Nguyen
et al., 2014). For instance, (Magnier and Haghighat,
2010) and (Asadi et al., 2014) are using a neural net-
work and a genetic algorithm for a multi-objective
optimization.

The current analysis shows a MOO for a building re-
trofit by replacing the detailed building model with a
neural network. A genetic algorithm is used for the op-
timization. Therefore the refurbishment of a building
shell from a single family home will be optimized un-
der consideration of the objectives costs (Net Present
Value - NPV), global warming potential and thermal
comfort.

METHODOLOGY

In this paper the following approach was carried out:

• Definition of a case study and preparation of a
detailed building model of a single-family ho-
me.

• Data collection from this detailed building mo-
del for the learning and testing of a meta model.
The collection was executed with a Monte Car-
lo study combined with a sobol sampling of the
defined building parameters.

• Development of a meta model based on the
sampling data from the building model.

• Optimization of refurbishment measures with a
genetic algorithm.



Case Study
The case study in this paper is taken from a project
which analyses the influence of climate change on re-
furbishment in the residential sector. Three different
districts of two cities are investigated. The used single-
family home (SFH) represents a typical building of
one of these three districts. The building is located in
Munich, Germany, and has the following main para-
meters:

Tabelle 1: Building parameters

Parameter Value Unit

A/V (area to volume ratio) 0.85 m2

m3

Ū-value (mean U-Value) 1.18 W
m2K

Awin (total window area) 15.23 m2

NIA (net internal area) 130 m2

U-value external wall 1.47 W
m2K

U-value roof 1.10 W
m2K

U-value floor 1.10 W
m2K

U-value window 3.50 W
m2K

SHGC - window 0.70 -

Abbildung 1: 3D model of the building

The detailed building model was developed in the soft-
ware IDA ICE (Sahlin et al., 2004). The climate data
is taken from the regional climate model (REMO) (Ja-
cob et al., 2008) and focuses on the region of Munich.
The simulation results of the analysis with IDA ICE
provide the learning and testing data for the meta mo-
del.

Meta Model
A simple feed-forward neural network was used to
construct the surrogate model. Neural networks are
part of non-linear regression methods. They offer the
opportunity to reproduce linear and non-linear rela-
tions between input and output variables inspired by
theories about how the brain works (Kuhn and John-

son, 2013). The structure of a neural network is based
on layers (Figure 2). The first layer represents the input
variables, the last layer contains the output variables
and the layers between are hidden layers. In each layer
are neurons. The neurons are connected with weights,
which are updated in the fitting process by a training
algorithm until the output has a sufficient quality (En-
disch, 2009). In this study the neural networks are built
with the “nnet“ package (Venables and Ripley, 2002)
provided in the statistical software R (R Core Team,
2014).

Abbildung 2: Schematic structure of the used neural
network

Two neuronal networks are developed to replace the
detailed building model: one with the output annu-
al heating demand (qheat [kWh/a]) of the whole
building and the other with overheating degree hours
[Kh/a] of a critical zone. There are six input pa-
rameters representing the building (Figure 2). These
parameters are necessary to analyse the energy effi-
ciency of the building envelope. There is one hidden
layer and the amount of neurons will be identified by a
parametric study later on. The sample size for learning
and testing is varied to analyse the influence on the
model quality. Therefore a sample size of 1000, 10000
and 30000 was chosen. The sample data was split in
50 % for learning and 50 % for testing of the meta
model.

The coefficient of variation (CV - RMSE) based on
the root mean squared error (RMSE) was utilized as
the performance metric in the analysis to compare the
quality of the neural network during the calibration
process.

CV =
RMSE

ȳ
∗ 100 (1)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2)

While yi is the observed value from the building mo-
del, ŷi is the predicted value of the meta model; ȳ is the
mean of the observed values and n is the total number
of observations.



Optimization
The used genetic algorithm was build up in (R Co-
re Team, 2014) and has the following pseudocode
more details in (Maderspacher, 2013):

Algorithm 1: Genetic Algorithm
Input: size α of population, number δ of

generations
1 generate α feasible solutions randomly
2 save them in the population Pop
3 for i = 1 to δ do
4 splitting population nc = α/5
5 for j = 1 to nc do
6 Pop1 ← elitism select the first nc

solutions(Pop)

7 for j = 1 to nc do
8 Pop1 ← generate randomly solutions

9 for j = 1 to nc do
10 Pop1 ← bit-flip mutation(Pop)

11 for j = 1 to nc do
12 Pop1 ← one-point crossover(Pop)

13 for j = 1 to nc do
14 Pop1 ← two-point crossover(Pop)

15 Pop← Sorting(EvaluateFitness(Pop1))

16 return Pop

The objective thermal comfort is represented with
overheating degree hours (ODH) from (DIN4108-2,
2013). The ODH will not be directly optimized, they
are used as a constraint for the heating demand. This
is realized with a penalty function which adds additio-
nal heating demand if the ODH gets higher than 1200
[Kh/a].

f(x) = α ∗
(( x− 1200

max(x)− 1200

)
∗ 10

)
(3)

While x is the heating demand and α is the factor
for weighting the penalty, the constant 1200 stands
for the benchmark of the ODH in [Kh/a] based on
(DIN4108-2, 2013). In this study, α is defined by
100.000 to ensure that the optimal solutions always
fulfil the rules and regulations.

To determine the costs of a retrofit measure, only the
additional costs which relate to energy reduction are
considered (BMVBS, 2012). Costs which are based on
common renovation, for example the rent for a scaffol-
ding are not included. The net present value (NPV) ap-
proach is used to asses the cost benefit of a refurbish-
ment measure. For all measures a life cycle of 30 years
is defined, the rate of return by 4 % and the increase
of the energy prices by 5 %. The objective function for
optimizing the global warming potential (GWP) and
NPV is defined as:

f(x) = w1 ∗ −fNPV (x) + w2 ∗ fGWP (x) (4)

The function of GWP is based on the simulation re-
sults of heating demand combined with the penalty
function for the ODH and a factor for the global war-
ming potential. To turn the objective function into a
minimization problem the function of the NPV gets
a negative sign. Because the optimal solution of the
NPV would be typically a maximization. Both functi-
ons are normalized to vary between 0.0 and 1.0. The
factors w1 and w2 can be used for weighting the diffe-
rent objectives. In this study both factors are set to 0.5.

RESULTS AND DISCUSSION
Calibration of the neural network (NN)
In a first step, the number of neurons in the hidden
layer were analysed for two objectives: heating de-
mand (qheat) and overheating degree hours (ODH).
Therefore, the amount of samples for learning and te-
sting of the neural network are varied. The coefficient
of variance (CV) represents the model quality. If the
value of the CV gets smaller the quality of the model
increase.

Abbildung 3: Variation of the number of hidden
neurons and the influence on the CV for the objectives

qheat and ODH depending on the sample size

Figure 3 points out that the NN with the objective
qheat provides a better model quality with less samples
compared to the objective ODH. Both models show a
reliable quality with sample size of 5000 for learning.
In a next step, a cross validation of both meta models
was fulfilled. Figure 4 represents the cross validation
of the objective qheat with the predicted values on the
y - axis and the results of the detailed building model
on the x - axis. The NN has a suitable quality indepen-
dent from the sample size.



Abbildung 4: Cross validation of the NN-qheat

An interesting point to note is the extension on the
upper and lower limit of the range depending on the
amount of samples. The neural network with 500
samples for learning has a minima qheat of 9156
[kWh/a] and the one with 15000 samples for learning
of 7587 [kWh/a]. This is caused by a more exhaustive
description of the design space with a higher amount
of samples. This is a very important fact, if a meta mo-
del is used for optimization. For example, if the ob-
jective qheat should be minimized without constraints
the search of the optimization algorithm will definitely
end on the lower limit of the surrogate model. There-
fore, it is important to represent the limits of objective
accurately.

Abbildung 5: Absolute error on the upper and lower
limit of the NN-qheat

Figure 5 shows the absolute error of qheat on the upper
and lower limit of the NN depending on the sample
size. The fourth group of bars are results of a optimi-
zation of qheat without constrains. Figure 5 points out
the necessity of analysing the upper and lower limit of

the meta model which is used for optimization. If only
the coefficient of variance and the results of the cross
validation were taken into account for the model qua-
lity, it seems a sample size of 500 for learning would
be enough.

The cross validation of the objective ODH in Figure 6
shows an appropriate model quality. An extension of
the range depending on the sample size can be obser-
ved as well. A sample size of 15000 for learning also
represents an accurate model quality on the upper and
lower limit of the surrogate model (see Figure 7). Ta-
ble 2 summarises the results of the parametric study
for both objectives. All three criteria, RMSE, CV and
the coefficient of determination R2 of the cross vali-
dation indicate a resilient model quality. But based on
the analysis of the error on upper and lower limit of
the model (Figure 5 and 7) a sample size of 15000 for
learning is chosen for further work.

Abbildung 6: Cross validation of the NN-ODH

Abbildung 7: Absolute error on the upper and lower
limit of the NN-ODH



Tabelle 2: Results of the parametric study

Samples Neurons RMSE CV R2

500 qheat 11 18.65 0.12% 0.999

500 ODH 21 20.20 3.01% 0.988

5000 qheat 36 6.54 0.03% 0.999

5000 ODH 35 6.78 1.01% 0.998

15000 qheat 36 6.17 0.02% 0.999

15000 ODH 40 5.67 0.84% 0.999

Calibration of the genetic algorithm (GA)
For a efficient performance of a genetic algorithm, it
is necessary to carry out a parametric study. To eva-
luate the performance of the optimization algorithm it
can be useful to define a number of optimization runs
and look how much of the solutions find an optimum1.
With the help of a cumulative distribution function it
is possible to illustrate whether there is an optimum
and how many solutions can find it. In Figure 8 it
seems there is an optimum at around 6000 [kWh/a].
The solutions of the optimization with 500 runs (beige
colour) do not reach the minimal energy demand of
5911 [kWh/a]. At the optimization with 5000 runs
(green colour) around 5 % (0.05 on the y-axis) of the
solutions show the optimum. With 25000 runs (orange
colour) around 70 % (0.7 on the y-axis) of the optimi-
zation results can find the minimal qheat.

Abbildung 8: Cumulative distribution function of all
optimization results depending on the number of runs

For the further investigation a maximum iteration of
25000 runs with 250 generations and population size
of 100 was chosen. Detailed information about the pa-
rametric study of the GA can be found in (Maderspa-
cher, 2013).

Optimization of heating demand (qheat) and ther-
mal comfort (ODH)
In a first step, the heating demand qheat should be op-
timized with an improvement of the building envelope.
If the renovation just considers the objective qheat the-
re could be problems during summer with overheating
of critical rooms. Figure 9 shows the trade-off between
ODH [Kh/a] and qheat [kWh/a]. There is a pareto
frontier between these two objectives. A pareto opti-
mal solution indicates that it is not possible to impro-
ve, based on the objective function, variable x without
deteriorate variable y. In this case, if qheat will be re-
duced, the overheating degree hours are increasing.

Abbildung 9: Solutions for the optimization of qheat
with a highlighted Pareto-optimal front

Abbildung 10: Cumulative distribution function of all
optimization results from the objective qheat (25000

runs).

In this case study, the objective thermal comfort will
be considered further as a constrained for qheat, reali-
zed by a penalty function (Eq. (3)). This is to ensure
that all optimal solutions fulfill the benchmark of 1200

1A genetic algorithm contributes to the class of metaheuristics. This class of algorithms cannot guarantee to find an global optimum.



[Kh/a] based on (DIN4108-2, 2013). Figure 10 illu-
strates the optimization results for qheat combined
with the penalty function (Eq. (3)). By comparing the
optimum of 5911 [kWh/a] in Figure 10 with Figure
9 the value of the ODH stands at 1193 [Kh/a].

Table 3 shows the results and boundaries of the buil-
ding parameters for the optimization of qheat. The up-
per limit (Max) for the optimization parameters is ba-
sed on the representative building of the case study.
The lower limit (Min) is based on the passive house
requirements. The benchmarks for the German rules
and regulations for renovation are shown in (EnEV).
The solutions for the optimization of qheat (Opt) wi-
thout a penalty for thermal comfort are as expected.
The U-values are on the lower limit and the solar he-
at gain coefficient (SHGC) is on the upper limit of
the optimization range. The results with the integrated
penalty (OptPen) are slightly different for the SHGC,
which respects the benchmark for the overheating de-
gree hours.

Tabelle 3: Boundaries and results of the building
parameters for the optimization of qheat and qheatPen

U -
Wall

U -
Roof

U -
Floor

U -
Wind. SHGC

Max 1.47 1.10 1.10 3.5 0.7

Min 0.15 0.15 0.15 0.8 0.3

EnEV 0.24 0.24 0.3 1.3 -

Opt 0.15 0.15 0.15 0.8 0.7

OptPen 0.15 0.15 0.15 0.8 0.45

Optimization of the net present value (NPV)
Another important objective for an optimal retrofit are
costs. In this case study the net present value approach
is chosen to compare the cost benefits of different re-
novation measures (see Section Optimization). Figure
11 represents the dependencies of the U-value and the
NPV of different insulation measures based on the sin-
gle family home of the case study. The diagram points
out that for all measures the optimum of the NPV is
not the minimum U-value. This indicates that the ob-
jectives minimizing qheat and maximizing NPV have
a trade-off. Based on the NPV, insulating the floor is
not cost effective because the NPV never gets positi-
ve. The most profitable measure seems to be insulating
the external wall.
Figure 12 and table 4 represent the results of the opti-
mization of the net present value. There is an optimum
of the NPV at 49128 [EUR] in Figure 12. A compa-
rison of the optimal building parameters (OptPen) at
table 3 and 4 show differences. The U-values for the
insulation of the external wall, floor and roof for the
objective NPV do not move to the lower limit of the
range. This means, for a cost efficient renovation it is

not necessary to save as much energy as possible. So
there is a clear trade-off between minimizing energy
consumption and maximizing the net present value.

Abbildung 11: Net present value depending on the
U-value of different renovation measures

Tabelle 4: Boundaries and results of the building
parameters for the optimization of NPV

U -
Wall

U -
Roof

U -
Floor

U -
Wind. SHGC

Max 1.47 1.10 1.10 3.5 0.7

Min 0.15 0.15 0.15 0.8 0.3

EnEV 0.24 0.24 0.3 1.3 -

OptPen 0.21 0.20 0.46 0.8 0.5

Abbildung 12: Cumulative distribution function of all
optimization results from the objective NPV (25000

runs).



Multi-objective optimization of global warming po-
tential (GWP) and net present value (NPV)
The results from the previous analysis demonstra-
te a trade-off between minimizing the heating de-
mand qheat (respectively the global warming potential
(GWP)) and maximizing the cost benefits represen-
ted by the net present value. Thus a multi-objective
optimization could be useful. Because in the case of
two objectives with a trade-off the MOO provides
results in form of a pareto frontier. Based on these
pareto-optimal solutions a decision maker can chose
an appropriate combination of retrofit measures. It is
also possible to set different weights for the objectives
(see Section Optimization) to affect the results of the
MOO.

Abbildung 13: Pareto-optimal solutions of the
Multi-objective optimization of GWP and NPV

Tabelle 5: Results of the building parameters for the
MOO of NPV and GWP

U -
Wall

U -
Roof

U -
Floor

U -
Wind. SHGC

PO
max 0.21 0.20 0.46 0.8 0.5

PO
min 0.15 0.15 0.15 0.8 0.45

Figure 13 illustrates the pareto-optimal solutions for
the objectives NPV and GWP. These results are based
on balanced weights of both objectives (see Section
Optimization). Table 5 shows an optimal setting of
building parameters of the minimum and maximum
solution of the pareto frontier (blue dots in Figure 13).
These solutions are similar to the OptPen building pa-
rameters of table 3 and 4.

Computational effort
To apply a MOO with a neural network instead of a
detailed building model additional effort is necessary.
Because at first a building model has to be develo-
ped2 to provide a database for the learning and testing
of a neural network. For the presented case study it
took around 36 hours to provide the sampling data of
30.000 simulations of the detailed building model on a
Intel Xeon CPU E5-2687W v3 3.10 GHz workstation
with 20 threads. This is possible by parallelising the
Monte Carlo process. Additional three days for trai-
ning and validation of the neural network were needed.

Table 6 illustrates a comparison of the computational
time for a detailed building model and a neural net-
work of the case study. The building model requires
86 seconds for one simulation compared to 0.02 se-
conds needed by the neural network. For the optimi-
zation with the genetic algorithm the abort criterion
was 25000 simulations. The neural network takes 79
seconds for an optimization process. Instead, the de-
tailed building model takes more than three weeks for
an optimization with 25000 runs. To analyse different
refurbishment strategies, for example different interest
rates of the NPV, a lot of optimizations are necessary.
If a detailed building model is used for this analysis,
the computational effort is not practical. This is spe-
cially the case because a numerical optimization pro-
cess with a common BES tool is hard to parallelise.
Therefore the additional effort for developing a neural
network could be neglected.

Tabelle 6: Comparison of the computational effort of
a detailed building model and a neural network

Model Simulation
runs

Computational
effort [s]

Building
model 1 86

Neural
network 1 0.02

Building
model 25000 21.5x105

Neural
network 25000 79

CONCLUSION
In this paper, the advantage of a multi-objective op-
timization for a building retrofit and the capability of
a neural network to replace a detailed building model
was discussed. A refurbishment of a building envelo-
pe was optimized. In a first step, the trade-off between
thermal comfort and heating demand was carried out.
The second step illustrates the differences between
maximizing the cost benefit and minimizing the glo-

2It is possible to use other sources for data to develop a meta model for instance measured data of a building.



bal warming potential. Based on the exemplary results
of the case study, the benefits of the MOO to find
solutions by combining different objectives were pre-
sented.

The neural network demonstrates the ability to replace
a detailed building model for a multi-objective opti-
mization. But as shown, it is necessary (behind the
standard validation processes like cross validation and
evaluating the CV) to analyse the upper and lower li-
mits of the meta model carefully. Because during an
optimization it is possible to reach the boarders of the
valid area of the surrogate model. The neural network
also demonstrates advantages in the computational ef-
fort for the optimization. For an MOO with 25000 si-
mulations on a single core only 79 seconds are needed.
For the same optimization a detailed building model
requires 24 days. For the case study additional work
of 5 days is necessary to develop the neural network.
But once the surrogate model is developed it can be
used for a wide range of analyses, e.g. optimizations
with different rates of interest for the NPV or different
weights for the objectives NPV and global warming
potential.
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