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ABSTRACT 

If detailed building models are applied for long-term 

simulations, for instance the prediction of the future 

energy demand under climate change, the 

computational effort can turn into a serious issue. 

Machine learning algorithms like Neural Networks 

(NN) or Support Vector Machine (SVM) could be an 

alternative. In this work a possible application of NN 

and SVM for long-term forecasts are proven and their 

limitations are presented. In the examined case study, 

with a simulation period over 30 years, the SVM is 

hundred fifty times and the NN ten times faster than a  

detailed building model. This reduction of 

computational effort can be useful for further studies 

as a uncertainty analysis of climate change.  

INTRODUCTION 

Buildings are responsible for 40% of all energy 

consumption and 36% of total CO2 emissions in 

Europe (EU-Council 2010). These facts make the 

building sector very important for any kind of climate 

change mitigation strategies. To develop measures for 

energy and CO2 reduction of buildings, special tools 

and calculation methods are necessary.  

In the field of calculating the energy demand of 

buildings different kinds of model approaches are in 

use. The common models represent well-defined 

physical phenomena and properties. Most of the 

available software tools are able to handle the physical 

behaviour of the building combined with different 

types of HVAC systems. If these models are applied 

for long-term simulations, for instance the prediction 

of the future energy demand under climate change, the 

computational effort can turn into a serious issue. This 

is important when further analyses for sensitivity and 

uncertainty are deployed. For this reason it is 

necessary to use techniques with low computational 

effort combined with the ability to provide detailed 

results for energy demand and thermal behaviour of 

buildings. Machine learning algorithms could be a 

method to develop a meta model, which can provide 

detailed results with reduced computational effort.   

In the field of building simulation, the most widely 

used algorithms are neural networks (NN) and support 

vector machines (SVM)  

(Zhao and Magoulès 2012, Jain, Smith et al. 2014). 

The most common applications of NN and SVM for 

buildings are short term forecasts of heating, cooling 

and electric loads (González and Zamarreño 2005, 

Karatasou, Santamouris et al. 2006, Kavaklioglu 

2011, Mustafaraj, Lowry et al. 2011, Zhang, Hong et 

al. 2012, Zhao and Magoulès 2012). 

The primary objective in this paper is to assess the 

capability of neural networks and support vector 

machines for long-term simulations. This is going to 

be implemented with a comparison of the results with 

a detailed building simulation model. 

METHODOLOGY 

Neural Networks 

There are many different kinds of neural networks. For 

the short term prediction of thermal behavior of 

buildings, a nonlinear autoregressive model with 

external inputs (NARX) are often used (Ferreira, 

Ruano et al. 2012). This kind of models are called 

serial-parallel models. A special characteristic of a 

NARX model is that a time delayed output of the 

system (for example the building) is used as input for 

the neural network. But for a long term prediction this 

model structure leads to a bias error (Isermann and 

Münchhof 2011). 

To simulate a nonlinear dynamic system, like the 

thermal behavior of a building, a Nonlinear Output 

Error (NOE) model is more reliable (Nelles 2001). 

The NOE has a parallel model structure which uses the 

model output, but not the system output as input for 

the neural network. A detailed description of NARX 

and NOE models and their application in building 

simulation can be found in (Endisch 2009, Jungwirth 

2014). In this paper a nonlinear dynamic neural 

network with NOE structure is used to develop a meta 

model of a building. The neural network was 

implemented as a General Dynamic Neural Network 

(GDNN) (Endisch 2009). 

  



SVM 

Support Vector Regression (SVR) is a version of SVM 

for regression estimation, which is necessary for 

problems in the field of building simulation. In this 

paper, an epsilon-SVR model is used to be consistent 

with previous literature (Jain, Smith et al. 2014). For 

the kernel function the Gaussian radial basis function 

(RBF) is chosen because the RBF is one of most 

widely used kernel functions (Zhao and Magoulès 

2012). If the RBF is chosen, the parameter Cost (C), 

Epsilon (ε) and Gamma (γ) are user-defined variables. 

This three variables have a significant influence on the 

SVR outcome. In our work, the variable Gamma is 

defined by γ = 1/k, where k means the number of 

inputs. For Cost and Epsilon a parametric study was 

carried out (see section “Support Vector Machines”). 

The epsilon-SVR model was implemented with the 

statistical Software R (Team 2014) and the cran 

package “e1071” (Meyer, Dimitriadou et al. 2014).  

 

Simulation approach 

As a first step a detailed building model was 

developed using the software IDA ICE (Sahlin, 

Eriksson et al. 2004). The exemplary building is a 

multi-story dwelling. One zone at the fifth floor on the 

southwest corner was chosen for the further analysis 

(Figure 1). Based on the zone model of IDA ICE the 

influence of climate change on room temperatures und 

heating demand was analysed. The climate projection, 

which was used as input for the building simulation, is 

based on a regional climate model (REMO) (Jacob, 

Göttel et al. 2008) and focused on the region of 

Munich. To make the simulation results comparable, 

the climate data were split in four periods. The period 

1970 – 2000 represents the current state and the 

periods 2000 – 2030, 2030 – 2060 and 2060 – 2090 

demonstrates the future climate. The results of this 

analysis with IDA ICE provide the learning and test 

data for the machine learning algorithms. 

 

 

 
Figure 1: Building model in IDA – ICE 

 

In a second step, a sensitivity analysis for the weather 

variables was executed to detect the necessary input 

parameters for the NN and SVM. For the sensitivity 

analysis, the elementary effect method was used for 

detailed information (Morris 1991, Burhenne 2013).  

 

 

The following weather variables were assigned with a 

normal distribution for every time step with a standard 

deviation of ± 10% : 

 Ambient temperature (TAir) 

 Relative humidity (RelHum) 

 Direct normal radiation (DirNorm) 

 Diffus horizontal radiation (Diff) 

 Wind direction (WindD) 

 Wind speed (WindS) 

 

With sobol sampling a sample matrix with 100 runs 

was executed. The objective variables for the 

sensitivity analysis were heating load and overheating 

hours.    

A parametric study was performed to define the setup 

for the neural network. Hence, the input parameters, 

the number of neurons in the hidden layers and the 

time delay of in- and output were varied. The test and 

learning phase for the parametric study was one year. 

After detecting the optimal parameter settings, the 

GDNN was trained over the period 1970 – 2000. To 

evaluate the ability of long term forecasting the 

periods 2000 – 2030 and 2060 – 2090 were used as 

test periods. The results of the output variables, room 

temperature and heating load were compared to the 

results of the detailed zone model from IDA ICE.   

 

The same input variables for the GDNN were also 

used to develop the SVM model. To make the SVM 

more comparable to the GDNN, different models with 

and without external recurrences were analyzed. 

Afterwards a parametric study for the variables Cost 

and Epsilon were carried out. Then the developed 

SVM was trained over the period 1970 – 2000 and the 

same study was carried out as for the GDNN.  

 

Performance criteria 

The coefficient of variation (CV - RMSE) and the root 

mean squared error (RMSE) was utilized as the 

performance metric in our analysis to compare the 

quality of the models. Also the mean forecast error and 

the absolute forecast error per time step was applied. 
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While 𝑦𝑖  is the observed value from the zone model, 

�̂�𝑖 is the predicted value of the meta model; �̅� is mean 

of the observed values and 𝑛 is the total number of 

observations.  

 



RESULTS AND DISCUSSION  

Sensitivity analysis 

The results from the sensitivity analysis of the weather 

variables are shown in Figure 2 and 3. The x-axis 

shows the expectation µ and the y-axis shows the 

standard deviation σ of the distribution of elementary 

effects. A high value of µ means a large influence of 

the variable on the model output. If σ is high, a 

nonlinear behaviour of the variable and a major 

interaction with other variables occurs. Both results 

indicate an important role of the variables TAir, Diff 

and DirNorm. For that reason, they were chosen as 

input variables for the GDNN and SVM.  

 

 
Figure 2: Results of the sensitivity analysis for the output 

heating demand 

 

 
Figure 3: Results of the sensitivity analysis for the output 

overheating hours 

 

 

 

 

Neural Network 

Based on the sensitivity analysis three input variables 

were identified. The hours of the day [0-23] are also 

selected as input. This variable is represented by the 

sin (sh) and cosine (ch) of the daily hour as introduced 

in (Karatasou, Santamouris et al. 2006).   

 

 
Figure 4: Schematic structure of the used neural network 

The GDNN used for the parametric analysis has five 

inputs (Figure 4). There are also two hidden layers (h1 

and h2). The first layer h1 has five neurons. The 

second layer h2 has one neuron. The output has a 

feedback-connection with the first hidden layer, with 

a delay of five time steps. All direct inputs have also a 

delay of five time steps. For the parametric study the 

output variable is the indoor temperature.  

 

Parametric study 

In Table 1, the variation and combination of input 

variables and their resulting CV and RMSE is 

summarized. It seems that the ambient temperature 

has the most influence on the model quality. 

 

Table 1: Model quality by different inputs 

Input parameter CV-RMSE RMSE 

Ta, DirNorm, Diff, sh, ch 0.81 0.17 

Ta 2.49 0.55 

Ta, sh, ch 2.25 0.49 

Ta, DirNorm, Diff 0.92 0.20 

DirNorm, Diff 6.92 1.53 

DirNorm, Diff, sh, ch 8.18 1.81 

sh, ch 9.97 2.20 

 

To compare the maximum forecast error per time step, 

three combinations of inputs - ambient temperature 

(Ta), Radiation (DirNorm, Diff) and daily hour (sh, 

ch) - are defined (Figure 5). 

 

 

 

 



It turned out that a model with Ta as the only input has 

only a maximum forecast error per time step of 2 [K]. 

If radiation (DirNorm, Diff) is chosen for input, the 

error is three times higher.  

 

 
Figure 5: Maximal forecast error per time step by different 

input variables 

Figure 6 confirms the large influence of the variable 

ambient temperature. This graph demonstrates the 

influence on the mean forecast error by removing 

different input variables from the model. The Figure 

shows if you remove the variables for daily hour (sh, 

ch) the mean forecast error just rises up to 15 %. But 

if ambient temperature (Ta) is eliminated from the 

model input, the error increases up to 750 %. 

 
Figure 6: The influence on model quality by reducing 

different kind of inputs 

 

In a next step, the GDNN structure was analysed. 

Therefore the number of hidden layers was fixed to 

two and the number of neurons varied between one to 

ten. Figure 7 shows the mean forecast error depending 

on the number of neurons of the hidden layers one and 

two.  

 

Based on this graphical evaluation the minimum 

forecast error is achieved if the number of neurons of 

the firs hidden layers is set to five or seven. If the 

amount of neurons in- or decreases on the first layer 

the variance of the mean forecast error becomes larger. 

  

 

 
Figure 7: Analysis of the network structure by varying the 

number of neurons per hidden layer 

To investigate the influence of the recurrences from 

the in- and output variables, three studies were 

undertaken. At first, all input variables got a delay 

from one to twelve time steps. Then only the output 

variable got different delays and after this both in- and 

output feedback-loops got a delay (Figure 8).  

 

 
Figure 8: Influence on the mean forecast error by different 

delays of the input and output variables 

Through comparison of the results in Figure 8 it 

becomes clear that a delay of the output variable has 

much more influence on the model quality than of the 

input variables. It is interesting to see that a delay of 

in- and output in combination, sometimes provides 

worse results compared to a delay only on the output 

variable.  

 



Figure 9 shows the final results of the parametric 

study. The GDNN has two hidden layers with each of 

them having five neurons. The input and output 

variables have a delay of five time steps. The forecast 

error of the indoor temperature indicates reliable 

results for further investigations with a maximum of 

0.9 [K].  

 
Figure 9: Results of the GDNN [5,5,5,1]_D5 with the 

output “Indoor temperature” 

Long-term prediction of the GDNN 

In a next step, the GDNN was trained over 30 years 

across the period from 1970 – 2000 and tested for the 

periods 2000 – 2030 and 2060 – 2090. For the period 

2000 – 2030 the forecast offers usable results. The 

absolute forecast error of a time step is between 1.2 

and 1.4 [K] (Figure 10). The results for the period 

2060 – 2090 present an error of 6 [K], which is too 

large for a reliable analysis.  

The reason for the increase of the error is probably 

caused by the large differences of weather data from 

the learning and testing phase. The climate projection 

demonstrates an exponential rise of the ambient 

temperature. Therefore the difference between 

learning phase (1970 – 2000) and first test phase 

(2000 – 2030) is smaller than in the second test phase 

(2060 – 2090).  

 
Figure 10: Absolute forecast error per time step for the 

output indoor temperature 

The results for the output variable heating load are 

presented in Figure 11. The absolute forecast error 

rises during the period 2000 – 2030 up to 300 [W] and 

during the period 2060 – 2090 to 900 [W]. The 

difference of the energy demand for heating between 

the detailed zone model and the GDNN in the period 

2000 – 2030 is 0.8%. Hence, between 2060 – 2090 

there are is variance of 46 %.  

 

 
Figure 11: Absolute forecast error per time step for the 

output heating load 

 

Support Vector Machines 

With the structure of the GDNN it is possible to use 

internal recurrences for the input and output variables. 

In a standard Support Vector Regression there are no 

internal recurrences. Based on the results above, the 

information of the past time steps of the output has a 

remarkable influence on the model quality. For that 

reason SVR with and without external recurrences of 

the output 𝑦(𝑡) is analysed.  

 

 



Table 2: Model quality by different inputs with and without 

external recurrences 

Input parameter CV – RMSE RMSE 

Ta, DirNorm, Diff, sh, ch 5.71 1.26 

y(t – 1), Ta, DirNorm, 

Diff, sh, ch 

0.49 0.10 

y(t – 1), y(t – 2), y(t – 3), 

Ta, DirNorm, Diff, sh, ch 

0.48 0.09 

 

The results in Table 2 illustrate a model without 

external recurrences of the output 𝑦(𝑡), a model with 

one recurrence with a delay of one time step and a 

model with three external recurrences with a delay of 

one to three time steps. The recurrences have a large 

effect on the model quality. The improvement of the 

model quality between one and three external 

recurrences can be neglected. For that reason the 

model with one external input is chosen for the further 

analysis.   

 

Parametric study 

To improve the model accuracy a parametric study, 

based on a grid search of Epsilon (ε) [0,1] and Cost 

(C) [1,1000] was fulfilled. Figure 12 shows the results. 

Epsilon has a significant influence on the model 

quality (CV) for a detailed explanation of the meaning 

of ε and C see (Dong, Cao et al. 2005). For the further 

analysis Epsilon was chosen to be 0.083 and Cost to 

be 32.  

 

 
Figure 12: Analysis of the parameters Cost and Epsilon 

and their effect on the model quality - coefficient of 

variation (CV) 

 

Long-term prediction of the SVR 

For the long term prediction, the SVR was also trained 

for a 30 years period (1970 – 2000). The testing 

periods are 2000 – 2030 and 2060 – 2090. The results 

for the output indoor temperature are shown in Figure 

13. The forecast error per time step during the period 

2000 – 2030 is always smaller than 1 [K]. These 

results demonstrate the opportunity of using a SVR for 

long term prediction. However, for the period 

2060 - 2090 there is a forecast error of to 5 [K] which 

is not applicable for further analysis. The reason for 

this increasing error is probably the same as for the 

GDNN.  

 

 

 
Figure 13: Absolute forecast error per time step for the 

output indoor temperature 

The outcome of the forecast for the output variable 

heating load is presented in Figure 14. Both test 

periods present a reliable forecast error, less than 300 

[W]. The differences in the energy demand between 

the detailed zone model in IDA – ICE and the SVR is 

among 3% (2000 – 2030) and 7% (2060 – 2090). 

These results indicate that in this case the SVR is 

applicable for long term predictions.     

  

 
Figure 14: Absolute forecast error per time step for the 

output heating load 

Comparison of the different model approach  

When comparing the models by the coefficient of 

variance, the SVR demonstrates slightly better results 

than the GDNN (Table 3). Both models illustrates for 

the period 2000 – 2030 the ability of reliable long term 

prediction. Hence, if the test data are varying to strong 

from the learning data, as is the case in period 

2060 - 2090, the error increases in both methods.    

 

 

 



Table 3: Quality of the different model types for the output 

indoor temperature 

Model CV-RMSE RMSE 

GDNN 1 Year 0.78 0.16 

GDNN (2000-2030) 1.63 0.36 

GDNN (2060-2090) 10.22 2.45 

SVR 1 Year 0.49 0.10 

SVR (2000-2030) 0.87 0.21 

SVR (2060-2090) 6.30 1.51 

 

As mentioned in the introduction the computational 

effort could be an issue for long term simulations, as 

for example to analyze the influence of climate change 

on energy demand of buildings. In Table 4 a 

comparison of computational effort of the machine 

learning algorithms and the detailed building model is 

shown. A one-year simulation of the case study the 

GDNN and SVR just needs 3% of the simulation time 

compared to the detailed model. To simulate a 30 year 

period the GDNN is ten times and the SVR more than 

hundred fifty times faster as the detailed building 

model. This could be an advantage for further 

investigations as a uncertainty analysis based on 

climate data.  

 
Table 4: Computational effort of different model types and 

training phases for the output indoor temperature 

Model Mean 

forecast 

erorr [K] 

Computational 

effort [s] 

GDNN 1 Year 0.11 00.98 

SVR 1 Year 0.08 00.72 

IDA_ICE 1Year -- 33.00 

GDNN (2000-2030) 0.25 75.00 

SVR (2000-2030) 0.21 05.30 

IDA_ICE (2000-2030) -- 810.00 
 

CONCLUSION 

In this paper, the capability of neural networks and 

support vector machines for long-term forecasting in 

the field of building simulation was discussed. Both 

methods demonstrate the ability to predict long-term 

simulations. However the forecast error increases 

rapidly if the input data varies from learning data. This 

was clearly shown with the results of the period 

2060 – 2090. The advantage of the meta models are 

the reduced computing time compared to detailed 

building model. The SVR is hundred fifty times faster 

than the detailed model for simulating a 30 year 

period.  

 

In a next step a further analysis about the length of the 

learning period will be fulfilled to produce reliable 

results of both meta models for the whole climate data 

(2000 – 2090). After this, the meta models are used for 

a uncertainty analysis based on climate change.  

 

 

Using the time delayed output variable as an input 

presents a large influence on the model quality. 

Therefore the structure of the General Dynamic 

Neural Network (GDNN) works well for long-term 

predictions. This is due to the fact that the time 

delayed recurrence of the output variable is also 

developed with the GDNN. Whereas external 

recurrences are necessary for a comparable 

application of the Support Vector Regression.  
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